Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Int J Hyg Environ Health ; 257: 114338, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38354683

RESUMO

OBJECTIVES: To comprehensively assess the association of husband smoking with wives' thyrotropin abnormality. METHODS: This population-based retrospective cohort study included 2 406 090 Chinese reproductive-aged women who had participated twice in the National Free Pre-pregnancy Checkups Project between 2010 and 2020. Multivariate-adjusted odds ratios and 95% confidence intervals for subnormal and supranormal thyrotropin were estimated according to the husband's smoking status. RESULTS: Husband smoking at the first visit was associated with a 17% (15%-20%) and 26% (24%-28%) increased odds of subnormal thyrotropin and supranormal thyrotropin respectively compared to participants in neither-smoker group. In non-smoking participants with normal thyrotropin levels at the first visit, the corresponding increased risk of subnormal thyrotropin and supranormal thyrotropin at the second visit were 15% (12%-18%) and 19% (16%-21%) in contrast to participants without husband-smoking exposure. In non-smoking participants with abnormal thyrotropin levels at their first visit, husband smoking cessation was associated with 27% (17%-35%) and 36% (31%-40%) reduced odds of subnormal thyrotropin and supranormal thyrotropin at the second visit compared with the participants whose husband still smoking at the second visit. CONCLUSION: Husband smoking was associated with wives' subnormal thyrotropin and supranormal thyrotropin, and cessation of husband smoking could reduce the odds of thyrotropin abnormality. Couple-focused smoking intervention should be developed to reduce the burden of asymptomatic thyroid disease in females.


Assuntos
Cônjuges , Tireotropina , Gravidez , Humanos , Feminino , Adulto , Estudos de Coortes , Estudos Retrospectivos , China/epidemiologia
3.
Hum Reprod ; 39(2): 326-334, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38166353

RESUMO

STUDY QUESTION: Do prepregnancy peripheral leukocytes (PPLs) and their subsets influence the risk of spontaneous abortion (SAB)? SUMMARY ANSWER: PPLs and their subsets are associated with the risk of SAB. WHAT IS KNOWN ALREADY: Compelling studies have revealed the crucial role of maternal peripheral leukocytes in embryo implantation and pregnancy maintenance. Adaptive changes are made by PPLs and their subsets after conception. STUDY DESIGN, SIZE, DURATION: This population-based retrospective cohort study was based on data from the National Free Pre-pregnancy Check-up Project (NFPCP) in mainland China. Couples preparing for pregnancy within the next six months were provided with free prepregnancy health examinations and counseling services for reproductive health. The current study was based on 1 310 494 female NFPCP participants aged 20-49 who became pregnant in 2016. After sequentially excluding 235 456 participants lost to follow-up, with multiple births, and who failed to complete blood tests, a total of 1 075 038 participants were included in the primary analysis. PARTICIPANTS/MATERIALS, SETTING, METHODS: PPLs and their subset counts and ratios were measured. The main outcome was SAB. A multivariable logistic regression model was used to estimate the odds ratio (OR) and 95% CI of SAB associated with PPLs and their subsets, and restricted cubic spline (RCS) was used to estimate the nonlinear exposure-response relationship. MAIN RESULTS AND ROLE OF CHANCE: Of the included pregnant participants, a total of 35 529 SAB events (3.30%) were recorded. Compared to participants with reference values of PPLs, the ORs (95% CIs) of leukopenia and leukocytosis for SAB were 1.14 (1.09-1.20) and 0.74 (0.69-0.79), respectively. The RCS result revealed a monotonous decreasing trend (Pnonlinear < 0.05). Similar relationships were observed for the neutrophil count and ratio, monocyte count, and middle-sized cell count and ratio. The lymphocyte ratio showed a positive and nonlinear relationship with the risk of SAB (Pnonlinear < 0.05). Both eosinophils and basophils showed positive relationships with the risk of SAB (eosinophil Pnonlinear > 0.05 and basophil Pnonlinear < 0.05). LIMITATIONS, REASONS FOR CAUTION: Chemical abortion events and the cause of SAB were not collected at follow-up. Whether women with abnormal PPLs had recovered during periconception was not determined. WIDER IMPLICATIONS OF THE FINDINGS: PPLs and their subsets are associated with the risk of SAB. Leukopenia and neutropenia screening in women preparing for pregnancy and developing a feasible PPL stimulation approach should be emphasized to utilize the immune window of opportunity to prevent SAB. STUDY FUNDING/COMPETING INTEREST(S): This study was approved by the Institutional Research Review Board of the National Health and Family Planning Commission. This study was supported by the National Key Research and Development Program of China (grants 2021YFC2700705 [Y.Y.] and 2016YFC100307 [X.M.]) and the National Natural Science Foundation of China (grant no. 82003472 [L.W.]). The funding source was not involved in the study design, data collection, analysis and interpretation of the data, writing the report, or the decision to submit this article for publication. No competing interests. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Aborto Induzido , Aborto Espontâneo , Leucopenia , Gravidez , Animais , Feminino , Humanos , Cavalos , Aborto Espontâneo/etiologia , Estudos Retrospectivos , Aborto Induzido/efeitos adversos , Leucócitos , Leucopenia/complicações
4.
J Sci Food Agric ; 104(3): 1599-1608, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37847530

RESUMO

BACKGROUND: Recently, germinated brown rice (GBR) has gained substantial attention as a functional food because of its nutritional attributes. Notably, pulsed light technology (PLT) has emerged as a promising tool for enhancing rice germination and, consequently, has improved the nutritional and functional qualities of GBR-derived products. However, further research is required to comprehensively understand the impact of PLT on GBR physicochemical properties. The present study aimed to investigate the stimulating effects of PLT on starch hydrolysis, starch structure and functional properties of GBR. RESULTS: The PLT substantially boosted α-amylase activity during brown rice germination, leading to a 10.9% reduction in total starch content and a 17.3% increase in reducing sugar content, accompanied by elevated free water levels. Structural analysis indicated no changes in starch crystalline types, whereas gelatinization temperature slightly increased. Pasting properties exhibited a significant drop in peak viscosity. Scanning electron microscopy showed surface erosion of starch granules with microstructural changes. Furthermore, correlation analysis established positive links between α-amylase activity, reducing sugar accumulation, starch structure and functional properties in GBR. CONCLUSION: The present study demonstrates that PLT enhanced the physicochemical properties of GBR starch, significantly improving the stability of GBR products, thereby contributing to expanded applicability of rice starch in the food industry. © 2023 Society of Chemical Industry.


Assuntos
Oryza , Amido , Amido/química , Hidrólise , Oryza/química , alfa-Amilases , Açúcares
5.
Soc Sci Med ; 336: 116256, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37778143

RESUMO

Cardiovascular diseases, including hypertension, have posed a serious threat to human health in recent decades. Family-centered health promotion and disease control for the management of hypertension is gaining attention. In this study, we assessed the association between spousal educational attainment (SEA) and hypertension prevalence, awareness, and control, intending to provide new directions for family health care. A total of 71 211 191 reproductive-aged participants from the National Free NFPCP during 2013-2019 were included in the current study. Inverse probability weighting (IPW) via propensity models were used to adjust for the imbalance by SEA. Both multivariable-adjusted ORs and inverse-probability-weighted ORs were used to assess the association between SEA and the prevalence, awareness, and control of hypertension. ORs of prevalence, awareness, and control of hypertension with SEA stratified by sex, age, and residency type were also reported. Compared with participants with SEA of compulsory education, the inverse-probability-weighted ORs for hypertension were 0.97 (0.96-0.97), 0.99 (0.98-1.00), and 0.91 (0.88-0.93) for participants with SEA of senior high, college, and postgraduate, respectively. The corresponding ORs for hypertension awareness were 1.12 (1.10-1.13), 1.15 (1.13-1.16), and 1.38 (1.34-1.41). The increment of hypertension control associated with SEA was only identified in urban areas. Modification analyses revealed that urban participants were observed to have more healthy benefits associated with SEA; additional decreased prevalent hypertension and increased hypertension awareness associated with SEA were observed in wives and husbands respectively. Thus, SEA was associated with decreased prevalent hypertension and increased awareness and control of hypertension. Our findings call for increased participation of spouses in family-centered healthcare, with consideration of modified effects by gender, age, and residency type, to improve chronic disease prevention and control including hypertension.


Assuntos
Sucesso Acadêmico , Hipertensão , Humanos , Adulto , Prevalência , Hipertensão/epidemiologia , Escolaridade , Conscientização
6.
Cell Death Discov ; 9(1): 367, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37788997

RESUMO

PLK1 is a key serine/threonine kinase as well as a master mitotic regulator, but it has never been reported that PLK1 regulates DNA methylation. In the present study, we for the first time found that PLK1 inhibition disrupted global DNA methylation and elevated the expression level of tumor suppressor genes. Mechanistically, we found that PLK1 interacts UHRF1 protein to induce its phosphorylation at serine 265. Phosphorylation is required for the maintenance of UHRF1 protein stability by recruiting a deubiquitinase USP7. Conversely, PLK1 inhibition decreases UHRF1 protein interaction with USP7 and activates the ubiquitin-proteasome pathway, thereby accelerating UHRF1 protein degradation. UHRF1 degradation decreases the recruitment of DNMT1 to chromatin, and decreases the level of genome-wide DNA methylation, thereby elevating the expression of tumor suppressor genes and decreasing cell viability. We here presented the first report on the novel role of PLK1 in DNA methylation maintenance through UHRF1-DNMT1 pathway, and revealed a novel anticancer mechanism of PLK1 inhibitors.

7.
J Cell Biol ; 222(11)2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37728657

RESUMO

UHRF1 is an epigenetic coordinator bridging DNA methylation and histone modifications. Additionally, UHRF1 regulates DNA replication and cell cycle, and its deletion induces G1/S or G2/M cell cycle arrest. The roles of UHRF1 in the regulation of G2/M transition remain poorly understood. UHRF1 depletion caused chromosome misalignment, thereby inducing cell cycle arrest at mitotic metaphase, and these cells exhibited the defects of spindle geometry, prominently manifested as shorter spindles. Mechanistically, UHRF1 protein directly interacts with EG5, a kinesin motor protein, during mitosis. Furthermore, UHRF1 induced EG5 polyubiquitination at the site of K1034 and further promoted the interaction of EG5 with spindle assembly factor TPX2, thereby ensuring accurate EG5 distribution to the spindles during metaphase. Our study clarifies a novel UHRF1 function as a nuclear protein catalyzing EG5 polyubiquitination for proper spindle architecture and faithful genomic transmission, which is independent of its roles in epigenetic regulation and DNA damage repair inside the nucleus. These findings revealed a previously unknown mechanism of UHRF1 in controlling mitotic spindle architecture and chromosome behavior and provided mechanistic evidence for UHRF1 deletion-mediated G2/M arrest.


Assuntos
Epigênese Genética , Pontos de Checagem da Fase G2 do Ciclo Celular , Cinesinas , Fuso Acromático , Ubiquitina-Proteína Ligases , Apoptose , Linhagem Celular Tumoral , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Mitose , Humanos , Ubiquitina-Proteína Ligases/genética , Cinesinas/genética , Ubiquitinação , Dano ao DNA , Cromossomos/genética
8.
J Exp Clin Cancer Res ; 42(1): 204, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563661

RESUMO

BACKGROUND: Prostate cancer(PCa) is the most commonly occurring male cancer in the USA. Abiraterone or Enzalutamide have been approved for the treatment of metastatic castration-resistant prostate cancer (CRPC). However, the treatment-emergent neuroendocrine PCa (t-NEPC) may develop, resulting in drug resistance in about 10-17% CRPC patients. The detailed mechanisms remain unclear.. METHODS: The expression correlation of TOMM20 and AR in PCa was determined by analyzing publicly available datasets, or by IHC staining in tumor specimens. The protein interaction of TOMM20 and AR was validated by co-immunoprecipitation or GST pull-down assay. The impact of TOMM20 depletion on drug sensitivity were elucidated by assays of cell proliferation, invasion, sphere formation, xenograft growth and intravenous metastasis. The intracellular ROS level was measured by flow cytometry, and the NEPC transdifferentiation and characteristics of cancer stem-like cells were validated by RNA-seq, RT-PCR and western blotting. RESULTS: The protein level of TOMM20 is positively correlated with AR in PCa cells and specimens. TOMM20 protein physically interacts with AR. AR antagonists induced the protein degradation of TOMM20 through autophagy-lysosomal pathway, thereby elevating the intracellular ROS level and activating PI3K/AKT signaling pathway. When TOMM20 was depleted, PCa cells underwent EMT, acquired the characteristics of cancer stem-like cells, and developed resistance to AR antagonists. The stable depletion of TOMM20 promoted the transdifferentiation of PCa adenocarcinoma into NEPC and metastasis. Conversely, the rescue of TOMM20 re-sensitized the resistant PCa cells to AR antagonists. CONCLUSIONS: TOMM20 protein degradation induced by AR antagonists promoted the transdifferentiation of PCa to NEPC, thereby revealing a novel molecular mechanism by which AR antagonists develop drug resistance through mitochondrial outer membrane-mediated signaling pathway. These findings suggested that the decreasing or loss of TOMM20 expression in PCa tissues might become a useful predictor of PCa resistance to AR antagonists.


Assuntos
Antagonistas de Receptores de Andrógenos , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Neoplasias de Próstata Resistentes à Castração , Humanos , Masculino , Autofagia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/metabolismo , Fosfatidilinositol 3-Quinases , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Espécies Reativas de Oxigênio , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Antagonistas de Receptores de Andrógenos/farmacologia , Animais
9.
Eur J Pharmacol ; 942: 175522, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36681316

RESUMO

Prostate cancer (PCa) represents the second cause of cancer death in adult men. Aberrant overexpression of UHRF1 has been reported in several cancer types, and is regarded as a novel drug target for cancer therapy. Nevertheless, no UHRF1-targeted small molecule inhibitor has been testing in clinical trials. Traditional Chinese medicine (TCM) prescriptions have a long history for the treatment of PCa in China, and Chinese herbal extracts are important resources for new drug discovery. In the present study, we first screened the potentially effective components from the commonly used TCMs for PCa treatment in clinic by using network pharmacology together with molecular docking. We identified diosgenin (DSG) as a small molecule natural compound specifically targeting UHRF1 protein. Furthermore, we validated the results by using the wet lab experiments. DSG, by directly binding UHRF1 protein, induced UHRF1 protein degradation through the ubiquitin-proteasome pathway. Importantly, DSG induced UHRF1 protein degradation by reducing the protein interaction with a deubiquitinase USP7. DSG reduced the level of genomic DNA methylation, and elevated the expression of such tumor suppressor genes as p21, p16 and LXN, thereby resulting in cell cycle arrest, cellular senescence and the inhibition of xenograft tumor growth. We here presented the first report that DSG specifically induced UHRF1 protein degradation, thereby revealing a novel anticancer mechanism of DSG. Altogether, this present study provided a promising strategy to discover new molecule-targeted drugs from small-molecule natural products.


Assuntos
Neoplasias da Próstata , Ubiquitina-Proteína Ligases , Masculino , Humanos , Proteólise , Simulação de Acoplamento Molecular , Ubiquitina-Proteína Ligases/metabolismo , Neoplasias da Próstata/patologia , Metilação de DNA , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Peptidase 7 Específica de Ubiquitina/genética , Peptidase 7 Específica de Ubiquitina/metabolismo
10.
Int J Mol Sci ; 24(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36614255

RESUMO

Rice breeders are now developing new varieties with semi-high or even high plant height to further increase the grain yield, and the problem of lodging has re-appeared. We identified a major quantitative trait locus (QTL), qSCM4, for resistance to lodging by using an F2 segregant population and a recombinant self-incompatible line population from the cross between Shennong265 (SN265) and Lijiangxintuanheigu (LTH) after multiple years and multiple environments. Then, the residual heterozygous derived segregant population which consisted of 1781 individual plants, and the BC3F2 segregant population which consisted of 3216 individual plants, were used to shorten the physical interval of qSCM4 to 58.5 kb including 11 genes. DNA sequencing revealed the most likely candidate gene for qSCM4 was Os04g0615000, which encoded a functional protein with structural domains of serine and cysteine. There were 13 DNA sequence changes in LTH compared to SN265 in this gene, including a fragment deletion, two base changes in the 3' UTR region, six base changes in the exons, and four base changes in the introns. A near-isogenic line carrying qSCM4 showed that it improved the lodging resistance through increasing stem thickness by 25.3% and increasing stem folding resistance by 20.3%. Furthermore, it was also discovered that qSCM4 enhanced the primary branch per panicle by 16.7%, secondary branch by per panicle 9.9%, and grain number per panicle by 14.7%. All the above results will give us a valuable genetic resource for concurrently boosting culm strength and lodging resistance, and they will also provide a basis for further research on the lodging resistance mechanism of rice.


Assuntos
Oryza , Locos de Características Quantitativas , Oryza/genética , Oryza/metabolismo , Grão Comestível/genética , Grão Comestível/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Íntrons
11.
Oncogenesis ; 12(1): 1, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36593255

RESUMO

Oncogenic activation of PI3K/AKT signaling pathway, together with epigenetic aberrations are the characters of castration-resistant prostate cancer (CRPC). UHRF1 as a key epigenetic regulator, plays a critical role in prostate cancer (PCa) development, and its expression is positively correlated with the degree of malignancy. In this present study we investigated the potential regulatory mechanism of AKT1 on UHRF1, and further validated the in vitro and in vivo anticancer efficacy of AKT phosphorylation inhibitor MK2206 in combination with abiraterone. Both UHRF1 and p-AKT aberrantly overexpressed in the abiraterone-resistant PCa cells. Further studies revealed that AKT1 protein interacts with UHRF1, and AKT1 directly phosphorylates UHRF1 via the site Thr-210. MK2206 induced UHRF1 protein degradation by inhibiting AKT1-induced UHRF1 phosphorylation, and then reduced the interaction between UHRF1 and deubiquitinase USP7, while promoted the interaction between UHRF1 and E3 ubiquitin protein ligase BTRC. MK2206 significantly promoted the sensitivity of abiraterone-refractory PCa cells and xenografts to abiraterone by decreasing UHRF1 protein level, and reversed the phenotype of NEPC, evently induced cellular senescence and cell apoptosis. Altogether, our present study for the first time revealed a novel molecular mechanism of abiraterone resistance through PI3K/AKT-UHRF1 pathway, and provided a novel therapeutic modality by targeting PI3K/AKT1 to promote the drug sensitivity of abiraterone in PCa patients.

12.
Ultrason Sonochem ; 91: 106239, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36435087

RESUMO

This study investigated the effects of ultrasonication treatment on the germination rate of brown rice. Brown rice grains were subjected to ultrasound (40 kHz/30 min) and then incubated for 36 h at 37 °C to germinate the seeds. Ultrasonic treatment increased the germination rate of brown rice by up to ∼28 % at 30 h. Transcriptomic and metabolomic analyses were performed to explore the mechanisms underlying the effect of ultrasonic treatment on the brown rice germination rate. Comparing the treated and control check samples, 867 differentially expressed genes (DEGs) were identified, including 638 upregulated and 229 downregulated), as well as 498 differentially accumulated metabolites (DAMs), including 422 up accumulated and 76 down accumulated. Multi-omics analysis revealed that the germination rate of brown rice was promoted by increased concentrations of low-molecular metabolites (carbohydrates and carbohydrate conjugates, fatty acids, amino acids, peptides, and analogues), and transcription factors (ARR-B, NAC, bHLH and AP2/EREBP families) as well as increased carbon metabolism. These findings provide new insights into the mechanisms of action of ultrasound in improving the brown rice germination rate and candidate DEGs and DAMs responsible for germination have been identified.


Assuntos
Oryza , Humanos , Oryza/genética , Multiômica
13.
Mol Carcinog ; 61(8): 812-824, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35652616

RESUMO

Radiotherapy (RT) is a conventional cancer therapeutic modality. However, cancer cells tend to develop radioresistance after a period of treatment. Diagnostic markers and therapeutic targets for radiosensitivity are severely lacking. Our recently published studies demonstrated that the cell division cycle (CDC6) is a critical molecule contributing to radioresistance, and maybe a potential therapeutic target to overcome radioresistance. In the present study, we for the first time reported that Norcantharidin (NCTD), a demethylated form of cantharidin, re-sensitized radioresistant cancer cells to overcome radioresistance, and synergistically promoted irradiation (IR)-induced cell killing and apoptosis by inducing CDC6 protein degradation. Mechanistically, NCTD induced CDC6 protein degradation through the ubiquitin-proteasome pathways. By using small interfering RNA (siRNA) interference or small compound inhibitors, we further determined that NCTD induced CDC6 protein degradation through a neddylation-dependent pathway, but not through Huwe1, Cyclin F, and APC/C-mediated ubiquitin-proteasome pathways. We screened the six most relevant Cullin subunits (CUL1, 2, 3, 4A, 4B, and 5) using siRNAs. The knockdown of Cullin1 but not the other five cullins remarkably elevated CDC6 protein levels. NCTD promoted the binding of Cullin1 to CDC6, thereby promoting CDC6 protein degradation through a Cullin1 neddylation-mediated ubiquitin-proteasome pathway. NCTD can be used in combination with radiotherapy to achieve better anticancer efficacy, or work as a radiosensitizer to overcome cancer radioresistance.


Assuntos
Proteínas de Ciclo Celular , Neoplasias , Apoptose , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Proteínas de Ciclo Celular/metabolismo , Proteínas Culina , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/radioterapia , Proteínas Nucleares/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , RNA Interferente Pequeno/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinas/metabolismo
15.
Cancer Lett ; 520: 172-183, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34265399

RESUMO

The UHRF1 and CDC6, oncogenes play critical roles in therapeutic resistance. In the present study, we found that UHRF1 mediates androgen receptor (AR)-regulated CDC6 transcription in prostate cancer cells. In prostate cancer tissues and cell lines, levels of UHRF1 and CDC6 were simultaneously upregulated, and this was associated with worse survival. UHRF1 silencing significantly promoted the cytotoxicity and anti-prostate cancer efficacy of bicalutamide in mouse xenografts by inhibiting CDC6 gene expression. UHRF1 promoted AR-regulated CDC6 transcription by binding to the CCAAT motif near the androgen response element (ARE) in the CDC6 promoter. We further found that UHRF1 promoted androgen-dependent chromatin occupancy of AR protein by recruiting the H3K9me2/3-specific demethyltransferase KDM4C and modifying the intense heterochromatin status. Altogether, we found for the first time that UHRF1 promotes AR-regulated CDC6 transcription through a novel chromatin modification mechanism and contributes to anti-AR drug resistance in prostate cancer. Targeting AR and UHRF1 simultaneously may be a novel and promising therapeutic modality for prostate cancer.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas de Ciclo Celular/genética , Histona Desmetilases com o Domínio Jumonji/genética , Proteínas Nucleares/genética , Hiperplasia Prostática/tratamento farmacológico , Neoplasias da Próstata/tratamento farmacológico , Receptores Androgênicos/genética , Ubiquitina-Proteína Ligases/genética , Antagonistas de Androgênios/farmacologia , Antagonistas de Receptores de Andrógenos/farmacologia , Animais , Linhagem Celular Tumoral , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Hiperplasia Prostática/genética , Hiperplasia Prostática/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Receptores Androgênicos/efeitos dos fármacos
16.
Genomics ; 113(5): 3337-3348, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34298069

RESUMO

Hypoxic germination tolerance is an important trait for seedling establishment of direct-seeded rice. Our comparative metabolomics analysis revealed that weedy rice accumulated more sugar and amino acids than cultivated rice accumulated in the embryo and coleoptile tissues under hypoxic stress. At the transcriptional level, oxidative phosphorylation activity in weedy rice was higher than in cultivated rice that likely led to more efficient energy metabolism during hypoxic stress. Based on our comparative proteomics analysis, enriched proteins related to cell wall implied that the advantages in energy metabolism of weedy rice were ultimately reflected in the formation of tissue structures. In this study, we found that most of key hypoxic germination tolerance (HGT) genes shared the same genetic backgrounds with Oryza japonica, however, several of them genetically similar to other Oryza plant also play important roles. Our findings suggest weedy rice can serve as genetic resources for the improvement of direct-seeding rice.


Assuntos
Oryza , Cotilédone/genética , Germinação/genética , Oryza/genética , Oryza/metabolismo , Plantas Daninhas/genética , Sementes/genética
17.
J Exp Clin Cancer Res ; 38(1): 468, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31730000

RESUMO

BACKGROUND: The deubiquitinase USP7 has been identified as an oncogene with key roles in tumorigenesis and therapeutic resistance for a series of cancer types. Recently small molecular inhibitors have been developed to target USP7. However, the anticancer mechanism of USP7 inhibitors is still elusive. METHODS: Cell viability or clonogenicity was tested by violet crystal assay. Cell apoptosis or cell cycle was analyzed by flow cytometry, and chromosome misalignment was observed by a fluorescent microscopy. The protein interaction of PLK1 and USP7 was detected by tandem affinity purification and high throughput proteomics, and further confirmed by co-immunoprecipitation, GST pull-down and protein co-localization. The correlation between USP7 level of tumor tissues and taxane-resistance was evaluated. RESULTS: Pharmacological USP7 inhibition by P5091 retarded cell proliferation and induced cell apoptosis. Further studies showed that P5091 induced cell cycle arrest at G2/M phase, and particularly induced chromosome misalignment, indicating the key roles of USP7 in mitosis. USP7 protein was detected in the PLK1-interacted protein complex. USP7 interacts with PLK1 protein through its PBD domain by catalytic activity. USP7 as a deubiquitinase sustained PLK1 protein stability via the C223 site, and inversely, USP7 inhibition by P5091 promoted the protein degradation of PLK1 through the ubiquitination-proteasome pathway. By overexpressing PLK1, USP7 that had been depleted by RNAi ceased to induce chromosome misalignment in mitosis and again supported cell proliferation and cell survival. Both USP7 and PLK1 were overexpressed in taxane-resistant cancer cells, and negatively correlated with the MP scores in tumor tissues. Either USP7 or PLK1 knockdown by RNAi significantly sensitized taxane-resistant cells to taxane cell killing. CONCLUSION: This is the first report that PLK1 is a novel substrate of USP7 deubiquitinase, and that USP7 sustained the protein stability of PLK1. USP7 inhibition induces cell apoptosis and cell cycle G2/M arrest, and overcomes taxane resistance by inducing the protein degradation of PLK1, resulting in chromosome misalignment in mitosis.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Peptidase 7 Específica de Ubiquitina/genética , Peptidase 7 Específica de Ubiquitina/metabolismo , Apoptose/efeitos dos fármacos , Cromossomos , Cromossomos Humanos , Docetaxel/farmacologia , Resistencia a Medicamentos Antineoplásicos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Células HEK293 , Humanos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Masculino , Mitose/fisiologia , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Inibidores de Proteases/farmacologia , Estabilidade Proteica , Transdução de Sinais , Tiofenos/farmacologia , Transfecção , Peptidase 7 Específica de Ubiquitina/antagonistas & inibidores
18.
Oncogene ; 38(4): 549-563, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30158672

RESUMO

Ionizing radiation (IR) is a conventional cancer therapeutic, to which cancer cells develop radioresistance with exposure. The residual cancer cells after radiation treatment also have increased metastatic potential. The mechanisms by which cancer cells develop radioresistance and gain metastatic potential are still unknown. In this study acute IR exposure induced cancer cell senescence and apoptosis, but after long-term IR exposure, cancer cells exhibited radioresistance. The proliferation of radioresistant cells was retarded, and most cells were arrested in G0/G1 phase. The radioresistant cells simultaneously showed resistance to further IR-induced apoptosis, premature senescence, and epithelial to mesenchymal transformation (EMT). Acute IR exposure steadily elevated CDC6 protein levels due to the attenuation of ubiquitination, while CDC6 overexpression was observed in the radioresistant cells because the insufficiency of CDC6 phosphorylation blocked protein translocation from nucleus to cytoplasm, resulting in subcellular protein accumulation when the cells were arrested in G0/G1 phase. CDC6 ectopic overexpression in CNE2 cells resulted in apoptosis resistance, G0/G1 cell cycle arrest, premature senescence, and EMT, similar to the characteristics of radioresistant CNE2-R cells. Targeting CDC6 with siRNA promoted IR-induced senescence, sensitized cancer cells to IR-induced apoptosis, and reversed EMT. Furthermore, CDC6 depletion synergistically repressed the growth of CNE2-R xenografts when combined with IR. The study describes for the first time cell models for IR-induced senescence, apoptosis resistance, and EMT, three major mechanisms by which radioresistance develops. CDC6 is a novel radioresistance switch regulating senescence, apoptosis, and EMT. These studies suggest that CDC6highKI67low represents a new diagnostic marker of radiosensitivity, and CDC6 represents a new therapeutic target for cancer radiosensitization.


Assuntos
Antígenos CD/fisiologia , Antígenos de Diferenciação de Linfócitos T/fisiologia , Apoptose/efeitos da radiação , Carcinoma/patologia , Senescência Celular/fisiologia , Transição Epitelial-Mesenquimal/efeitos da radiação , Neoplasias Nasofaríngeas/patologia , Proteínas de Neoplasias/fisiologia , Processamento de Proteína Pós-Traducional/efeitos da radiação , Tolerância a Radiação/fisiologia , Animais , Antígenos CD/biossíntese , Antígenos CD/genética , Antígenos de Diferenciação de Linfócitos T/biossíntese , Antígenos de Diferenciação de Linfócitos T/genética , Carcinoma/radioterapia , Pontos de Checagem do Ciclo Celular/efeitos da radiação , Linhagem Celular Tumoral , Xenoenxertos , Humanos , Antígeno Ki-67/biossíntese , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Nasofaríngeas/radioterapia , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Fosforilação/efeitos da radiação , Estabilidade Proteica , Transporte Proteico/efeitos da radiação , Interferência de RNA , RNA Interferente Pequeno/genética , Ubiquitinação/efeitos da radiação , Raios X
19.
Sci Rep ; 8(1): 13507, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30202087

RESUMO

Blood urea nitrogen (BUN) is a surrogate marker for neurohormonal activation, but the association between BUN and the post-discharge prognosis in elderly patients with acute decompensated heart failure (ADHF) is not well defined. We explored the association between BUN and post-discharge all-cause mortality in 652 elderly patients (73.9 ± 7.8 yr) with ADHF. All patients were followed for a mean duration of 32 months (12-69 months). BUN was analyzed both as a continuous variable and according to two categories: low BUN group (BUN < 15.35 mmol/L, N = 361) and high BUN group (BUN ≥ 15.35 mmol/L, N = 291). The risk of all-cause mortality increased by 1.6% per 1 mmol/L increase in BUN concentration when BUN was used as a continuous variable [hazard ratio (HR): 1.016, 95% confidence interval (CI): 1.006-1.026, p = 0.002]. BUN maintained an independent and significant positive correlation with all-cause mortality as a categorical variable (HR: 1.355, 95% CI: 1.023-1.794, p = 0.034 for the high BUN group). The BUN C-statistic for predicting all-cause mortality was 0.624 (95% CI: 0.585-0.661). The cut-off value for BUN was 15.35 mmol/L with sensitivity of 0.58 and specificity of 0.63. The prognostic performance of BUN was similar to brain natriuretic peptide (BNP) for predicting all-cause mortality (C-statistic: z = 0.044, p = 0.965). These results suggest that BUN is an independent predictor of post-discharge all-cause mortality in elderly patients with ADHF and its prognostic performance was similar to that of BNP.


Assuntos
Nitrogênio da Ureia Sanguínea , Insuficiência Cardíaca/mortalidade , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Feminino , Seguimentos , Insuficiência Cardíaca/sangue , Humanos , Masculino , Alta do Paciente , Valor Preditivo dos Testes , Prognóstico , Medição de Risco , Análise de Sobrevida
20.
J Exp Clin Cancer Res ; 37(1): 153, 2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-30012171

RESUMO

BACKGROUND: The poly ADP ribose polymerase (PARP) inhibitor olaparib has been approved for treating prostate cancer (PCa) with BRCA mutations, and veliparib, another PARP inhibitor, is being tested in clinical trials. However, veliparib only showed a moderate anticancer effect, and combination therapy is required for PCa patients. Histone deacetylase (HDAC) inhibitors have been tested to improve the anticancer efficacy of PARP inhibitors for PCa cells, but the exact mechanisms are still elusive. METHODS: Several types of PCa cells and prostate epithelial cell line RWPE-1 were treated with veliparib or SAHA alone or in combination. Cell viability or clonogenicity was tested with violet crystal assay; cell apoptosis was detected with Annexin V-FITC/PI staining and flow cytometry, and the cleaved PARP was tested with western blot; DNA damage was evaluated by staining the cells with γH2AX antibody, and the DNA damage foci were observed with a fluorescent microscopy, and the level of γH2AX was tested with western blot; the protein levels of UHRF1 and BRCA1 were measured with western blot or cell immunofluorescent staining, and the interaction of UHRF1 and BRCA1 proteins was detected with co-immunoprecipitation when cells were treated with drugs. The antitumor effect of combinational therapy was validated in DU145 xenograft models. RESULTS: PCa cells showed different sensitivity to veliparib or SAHA. Co-administration of both drugs synergistically decreased cell viability and clonogenicity, and synergistically induced cell apoptosis and DNA damage, while had no detectable toxicity to normal prostate epithelial cells. Mechanistically, veliparib or SAHA alone reduced BRCA1 or UHRF1 protein levels, co-treatment with veliparib and SAHA synergistically reduced BRCA1 protein levels by targeting the UHRF1/BRCA1 protein complex, the depletion of UHRF1 resulted in the degradation of BRCA1 protein, while the elevation of UHRF1 impaired co-treatment-reduced BRCA1 protein levels. Co-administration of both drugs synergistically decreased the growth of xenografts. CONCLUSIONS: Our studies revealed that the synergistic lethality of HDAC and PARP inhibitors resulted from promoting DNA damage and inhibiting HR DNA damage repair pathways, in particular targeting the UHRF1/BRCA1 protein complex. The synergistic lethality of veliparib and SAHA shows great potential for future PCa clinical trials.


Assuntos
Benzimidazóis/uso terapêutico , Dano ao DNA/genética , Inibidores de Histona Desacetilases/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Animais , Benzimidazóis/farmacologia , Sinergismo Farmacológico , Inibidores de Histona Desacetilases/farmacologia , Humanos , Masculino , Camundongos , Camundongos Nus , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Neoplasias da Próstata/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...